Influence of yeast strain choice on the success of Malolactic fermentation

Nichola Hall Ph.D. Wineries Unlimited, Richmond VA March 29th 2012

INTRODUCTION

- Changing conditions dictate different microbial population dynamics
 - e.g. high pH, SO₂ addition levels, cleaning and sanitation practices
- Winemaker must manage the microbial populations through out the process
 - Cold Soak to bottling
- Co-existing *Saccharomyces* and *Oenococcus* populations must be compatible, if not:
 - Ethanolic fermentation issues
 - Malolactic fermentation issues

Saccharomyces cerevisiae

- ~180 enological strains available
 - Genetically different
 - Requirements may differ
 - Results may differ
 - Interactions with other organisms may differ!
 - Yeast: Yeast interactions
 - Positive, Negative or Neutral
 - Yeast: Bacteria interactions
 - Positive, Negative or Neutral

Oenococcus oeni

- ~ 30 enological strains available
 - Strict environmental limitations
 - Alcohol
 - pH
 - FSO₂/TSO₂
 - Temperature
 - Malic acid concentration
 - Nutrient status

POSSIBLE ORGANISM COMBINATIONS

- ~180 enological strains *S. cerevisiae*
- ~30 enological strains O. oeni
- 180x30....
 - 5400 possible combinations
 - assuming only 1 yeast and 1 bacteria present
 - Prediction for rate of success?
 - Dependant upon the combination
 - Various outcomes

ALCOHOLIC AND MALOLACTIC FERMENTATIONS

- Malolactic fermentations should not be considered as an afterthought
 - Alcoholic fermentation dictates the success rate!
- Easy ALF=Easy MLF
- Challenging ALF=Difficult MLF
- Planned in conjunction...

Inhibition of O. oeni by S. cerevisiae

• Ethanol production

- Affects the capacity of the bacteria to grow
 - Select strain which is resistant to the Ethanol level
- SO₂ production
 - Yeast strains classed as high, medium or low producers
 - Production can vary from <20mg/L to >90mg/L
 - Amount depends on the availability of nutrients and the presence of compounds in the must that can bind SO2
 - Know what levels are present!

Inhibition of O. oeni by S. cerevisiae

- Medium Chain Fatty Acids
 - Target and alter the bacterial membrane, interfere with ability to consume Malic Acid, and limit growth

Wine	Malic Acid (day 4)	Malic Acid (day 14)	% degradation after 14 days
Control	2.19	0.53	81
Wine + C6 145µM	2.24	0.46	84
Wine + C8 145µM	2.33	0.70	75
Wine + C10 145 μM	2.46	1.18	58
Wine + C6 52μM + C8 71μM + C10 μM	2.40	1.45	49

Medium chain fatty acids can also have a negative effect on yeast performance

YEAST NUTRIENT REQUIREMENTS

Nitrogen requirements : mg of YAN necessary to consume 1g of sugar

Inhibition of O. oeni by S. cerevisiae

- Alterations of acidity
 - Utilization of Malic acid, or production of Succinic acid
 - Differential Malic Acid consumption by different strains
- Glutamic Acid deficiency
 - Essential for growth
- Aromatic Compounds
 - B-phenylethanol
- Anti-bacterial metabolites ?

Phenolics and pesticide residues can also result problematic MLF

Stimulation of O. oeni by S. cerevisiae

- Yeast autolysis rate
 - Strain dependant
 - Influences the nutritional composition of the medium
 - Releasing amino acids, peptides, mannoproteins
 - » Mannoproteins have dual functions
 - » Detoxification of medium by absorption
 - » Protection of cells from polyphenolic inhibition

Inhibition of S. cerevisiae by O. oeni

• Production of Acetic Acid

- Glucosidase Production
- Bacterial protease production
- Production of other yeast inhibitors?

BACTERIA: BACTERIA INTERACTIONS

- L. brevis
 - Produces Brevicin
 - Small thermostable protein (3kDa)
 - Broad range of action
 - Can inhibit O.oeni, P. damnosus, L. brevis
- L. casei
 - Produce Caseicin
 - Higher MWt, less stable
 - Inhibits fructose uptake

OVERVIEW

- Wine is the result of complex interactions between organisms
- Yeast strain choice <u>does</u> have an impact on the success rate of MLF
- Interaction is dependant upon:
 - Yeast and bacteria strain present
 - Juice/Must/Wine conditions
 - Winemaking practices
 - E.g. timing of inoculation

Acknowledgements

• Scientific community

 Bruce Zoecklein and managing board of Wineries Unlimited

 Vineyard and Winery Management for sponsoring event

Thank you

QUESTIONS

NICHOLAH@SCOTTLAB.COM

